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Abstract

Human T-cell leukemia virus type I (HTLV-I) is the etiological agent for adult T-cell leukemia (ATL), as well as for tropical
spastic paraparesis (TSP) and HTLV-I associate myelopathy (HAM). A biological understanding of the involvement of HTLV-I
and in ATL has focused significantly on the workings of the virally-encoded 40 kDa phospho-oncoprotein, Tax. Tax is a
transcriptional activator. Its ability to modulate the expression and function of many cellular genes has been reasoned to be a
major contributory mechanism explaining HTLV-I-mediated transformation of cells. In activating cellular gene expression, Tax
impinges upon several cellular signal-transduction pathways, including those for CREB/ATF and NF-�B. In this paper, we review
aspects of Tax’s transcriptional potential with particular focus on recent evidence linking Tax to IKK (I�B-kinase)-complex and
MAP3Ks (mitogen-activated protein kinase kinase kinases). Published by Elsevier Science Ltd.
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1. HTLV-I and adult T-cell leukemia (ATL)

Human T cell leukemia virus type 1 (HTLV-I) is the
etiological agent for adult T cell leukemia (ATL) [1],
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tropical spastic paraparesis (TSP) and various neuro-
logical disorders termed HTLV-I-associated myelopa-
thy (HAM) [2]. While the linkage between TSP/HAM
and HTLV-I is less understood, the role of HTLV-I in
ATL has been well-investigated. In this regard, in vivo,
ATL cells show nuclei with morphological aberrations
(indented or lobulated; [1]) and abnormal karyotypes
[3,4]; in particular, trisomy of chromosomes 3 and 7, as
well as deletions and breaks in chromosome 6 have
been observed [5–8]. ATL cells frequently present as
pleiomorphic multinucleated giant cells [9,10]. Consis-
tent with in vivo findings, lymphocytes infected in vitro
with HTLV-I show profound chromosomal changes
[11,12] verifying a link between viral infection and
morphological changes in infected cells.

While it is not yet fully understood how HTLV-I
engenders ATL, several lines of evidence link the virally
encoded 40 kDa nuclear phosphoprotein [13], Tax, to
cellular transformation [14–19]. Thus, Tax has been
shown to immortalize T lymphocytes [20] and trans-
form rat fibroblasts [14]. Tax not only sufficiently ini-
tiates the immortalization and transformation of
human thymocytes, cord blood lymphocytes and
murine fibroblast cells in vitro [14,16,20], but in some
settings has been shown to function in maintaining the
transformed phenotype [21]. Tax-transformed fibroblast
and lymphoid cells induced tumors in vivo when in-
jected into nude mice [14,21,22]. Interestingly, overex-
pression of HTLV-1 Tax in transgenic mice resulted in
the formation of mesenchymal tumors [23], salivary and
lacrimal gland exocrinopathy [24], lympadenopathy or
splenomegaly [25] and lymphoma or leukemia [26].

Finally, when Tax is deleted from the HTLV-I genome,
this altered proviral molecule is lost for its original
transforming potential [27].

Mechanistically, the role of Tax in cellular transfor-
mation likely relates to its activity as a transcriptional
activator. Tax potently stimulates the expression of its
cognate viral LTR [28,29], as well as the promoters of
several cellular genes. Thus, cellular genes such as IL-2,
IL-2R, c-fos, GM-CSF [19,30–38], as well as �-poly-
merase, c-myb, Lck and p53 [39–43] have all been
shown to be influenced by expression of Tax in cells.

In understanding Tax’s pleiotropic transcriptional ac-
tivities, work from several laboratories have collectively
defined its ability to act through four discrete cellular
signaling pathways: CREB/ATF [44]; NF-�B [45]; AP-1
[46]; and SRF [47] (Fig. 1). Amongst these pathways,
Tax’s signaling through CREB/ATF and NF-�B has
been most extensively investigated. Here, we review in
brief our current understanding of Tax’s transcriptional
activity, with particular emphasis on recent findings
pertaining to its signaling through NF-�B. For further
discussions of these topics, readers are encouraged to
consult several excellent recent reviews [45,48,49].

2. Nuclear transcriptional activities of Tax

The HTLV-I Tax protein is predominantly a viral
nuclear antigen [50] with a well-defined nuclear localiza-
tion signal (NLS; [51]) found in its N-terminal 48
residues. Despite this, it is evident that a small amount
of Tax protein resides in the cytoplasm of mammalian

Fig. 1. Schematic representation of the nuclear and cytoplasmic functions of HTLV-I Tax protein. Tax is shown to activate IKK- and
JNK-signaling pathways in the cytoplasm. The IKK-pathway impinges on the nuclear migration of NF-�B (p50p65 heterodimer); the
JNK-pathway leads to activation of Jun/Fos. In the nucleus, Tax is envisioned to dimerize and to interact with CREB, CBP and P/CAF co-factors
as well as with SRF in activating gene transcription. Tax-responsive elements in the HTLV-I LTR reside within the U3.
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cells [52]. Thus, in modulating gene expression, Tax is
envisioned to have promoter–poximal (i.e. nuclear) as
well as promoter–distal (i.e. cytoplasmic) effects (see
Fig. 1). Initial studies on Tax demonstrated convinc-
ingly that despite its abundant nuclear presence, Tax by
itself cannot associate directly with DNA [44]. Contem-
poraneous findings, however, provided clear evidence
that Tax could deregulated the expression of several
cellular immediately early (IE) genes. This Tax-medi-
ated dysregulation of gene expression is believed to
contribute importantly to its abrogation of normal
cellular metabolism [53].

2.1. SRF and AP-1

An early clue as to how HTLV might affect cellular
IE genes emerged from the finding that the DNA-bind-
ing serum responsive factor (SRF; [54]) could recruit
the Tax protein to cellular promoters such as those for
c-fos, egr-1 and egr-2 [47]. Thus, the CC(AT)6GG
motif (CarG box)-binding SRF protein was found to be
necessary for Tax’s transcriptional activation of a lim-
ited subset of promoters [55]; and residues 422–435 of
SRF was defined to bind Tax directly [56]. Hence, one
mechanistic view is that CarG-box-tethered SRF would
bind Tax, thereby bringing the viral oncoprotein to the
promoter. The C-terminal activation domain of Tax
[57] is then thought to contact directly with TATA-box
bound TBP-protein [58] resulting in enhanced
transcription.

Many cellular IE genes also contain promoter up-
stream AP-1 sites. Several studies have shown that
HTLV-I transformed T-cells express high levels of AP-1
activity [59,60]. Interestingly, the canonical AP-1 re-
sponsive sequence (5�TGACTCA3�) bears close resem-
blance to the three imperfectly conserved core
cAMP-responsive palindrome (5� TGACGTCA; [61])
present in the Tax-responsive 21-bp elements found in
the HTLV-I LTR. Direct experimental studies have
demonstrated that the 21-bp Tax-responsive elements
can serve as Jun-responsive sequences [46]. Subsequent
work has confirmed that Tax can activate the expres-
sion of several cellular promoters through AP-1 sites
[62,63]. Despite these reports, currently, it remains un-
clear whether the major mechanism guiding Tax-activa-
tion through AP-1 is via a promoter–proximal
enhancement of the DNA-binding activity of AP-1
[64,65], or through a Tax-mediate activation of the
JNK-1 kinase [66]. Relevant to the latter possibility, a
Tax-binding protein which signals through the TNF-�/
AP-1 pathway has recently been described [67].

2.2. CREB, CBP, P/CAF

The HTLV-I LTR (long terminal repeat) contains
three imperfectly conserved 21 bp Tax-responsive

(TxRE) sequences, each of which contains a core
CREB/ATF binding sites flanked by 5�G- and 3�C-rich
residues [29,68]. Highly efficient activation of this viral
LTR by Tax is, in part, explained by Tax/CREB/TxRE
ternary complex formation at these sites in the LTR
[69–73]. However, the ability of Tax to activate tran-
scription via CREB/ATF-sites is context specific, since
at other CREB-binding sites (i.e. those found in cellular
promoters), Tax–CREB complex formation may occur
[70,74,75], but transcriptional activation is not seen.

While the exact details of how Tax activates tran-
scription through CREB/ATF is not completely under-
stood, several findings which contribute important
mechanistic insight have been established. It is pro-
posed that the N-terminus of Tax (Fig. 2) directly binds
CREB molecules [69,75] docked at CRE-sites in the
viral TxRE. Binding of Tax to CREB enhances
CREB–CREB homodimerization and heightens result-
ing association to DNA ([76]; Fig. 3). Because optimal
activation through TxREs requires a dimeric form of
Tax-protein [77,78], enhanced CREB-dimerization at
the HTLV-I LTR could result as a functional conse-
quence of Tax–Tax homodimerization (Fig. 3).

In the Tax/CREB/TxRE ternary complex, Tax
makes limited direct contact with DNA [79–81]
through its 89–110 amino acid residues ([82]; Fig. 2).
Contact with DNA is suggested to result in proper
folding of the Tax protein [82] that may lead to a
functional presentation of its C-terminal activation do-
main [57]. Correctly folded Tax protein is known to
recruit through its amino acid residues 81–95 ([83]; Fig.
2) the transcriptional co-activators, CBP and p300
([84–86]; Fig. 3). However, recruitment of CBP/p300
was found to be insufficient for supporting Tax’s tran-
scriptional activity [83], suggesting that an additional
necessary component for activity remained uncharac-
terized. This missing factor could be the p300–CBP
associated factor, P/CAF, which was recently shown to
bind to the C-terminal activation domain of Tax
([87,88]; Figs. 2 and 3). Indeed, Tax mutants that fail to
bind to P/CAF correlate with the loss of ability to
activate transcription from the HTLV-I LTR [87].

3. Signaling by Tax through NF-�B

The biology of ATL cells is characterized by in-
creased expression of genes coding for lymphokines
[12,19,89] and lymphokine receptors (e.g. IL-2R�;
[19,30–32]). Expression of these genes is in part regu-
lated by the NF-�B family of transcription factors. The
NF-�B family encompasses several related proteins [90],
which can homo- or hetero-dimerize in binding to a
GGGRNNYYCC DNA-motif. NF-�B family members
function pleiotropically in diverse aspects of immune/
inflammatory responses and cellular growth and differ-
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Fig. 2. Linear representations of the various functional domains which have been characterized for the 353 amino acid Tax protein. (Top) The
N-terminus of Tax contains a nuclear localization signal (NLS) and a zinc-finger (Zn) structure. CREB-binding domain within Tax has also been
mapped to the N-terminus. An ‘ISGGLC’-sequence has been suggested to contact CREB2 [154]. p300/CBP, P/CAF and DNA-contact domains
are indicated. The middle of Tax contains several Leucine (L) residues and is necessary for homodimerization and for NF-�B activation [155]. At
its C-terminus, Tax has an activation domain and a sequence specific to Tax1, but absent from Tax2, which binds to the tumor suppressor
hDlg/SAP97 [156]. (Bottom) Schematic representation of single amino acid Tax mutants [94] which were characterized for deficit in transactivation
of either the HTLV-I (CREB/ATF pathway) or the HIV-1 (NF-�B pathway).

entiation [91]. Early HTLV-I research found, interest-
ingly, that Tax activation of genes, such as that for
IL-2R�, occurred through NF-�B binding sites [92,93].
Subsequently, extensive mutagenesis studies [94,95] sup-
ported the idea that Tax can generally activate cellular
transcription through a NF-�B-dependent pathway in a
manner distinct from its activation of CREB/ATF (Fig.
2). This concept is compatible with the observation that
NF-�B activity is constitutively elevated in primary
adult T-cell leukemia cells as well as in Tax-expressing
cells [96–100].

3.1. Interaction of Tax and NF-�B in the nucleus

NF-�B family members include p105, p100, p65, p52,
p50, c-Rel and Rel B [90]. The most frequently ob-
served NF-�B form is that of a p50–p65 dimer, which
is ambiently retained in the cytoplasm by inhibitor
ankyrin repeat-containing I�B molecules (I�B�, I�B�,
I�B�, p105, p100 and Bcl-3; reviewed in Ref. [101]). In
the commonly accepted paradigm, I�B� and I�B� play
major roles in sequestering p50–p65 dimer in the cyto-
plasm. Upon activation of cells by mitogens, cytokines,
bacterial lipopolysaccharides, virus infection and/or
stress signals, induced-phosphorylation of I�B� and
I�B� occurs on serines 32 and 36 and serines 19 and 23,
respectively (reviewed in Ref. [91]). Phosphorylated
I�B� and I�B� subunits are then targeted by ubiquitin-
ligase component protein, �-TrCP (reviewed in Ref.
[102]); this interaction leads to the ubiquination and
proteosomal degradation of the I�Bs. Upon removal of

I�Bs, NF-�B-molecules are freed to migrate from the
cytoplasm into the nucleus. Within the nucleus, NF-�Bs
bind promoter upstream DNA-motifs and activate the
transcription of a diverse subset of target genes.

Because of Tax’s predominant nuclear localization in
cells, an initial mechanistic explanation for Tax–NF-�B
interplay invoked events within the nucleus. In this
regard, Tax and NF-�B proteins were observed by
immunomicroscopy to colocalize together [103] within
nuclear bodies that contain RNA polymerase II and
other transcription factors [104]. Tax was also found to
capably bind NF-�B subunits p50 [105] and p52 [106],
suggesting a role in direct enhancement of NF-�B’s
nuclear transcription function. More recent studies
have indicated that the primary action of Tax is to
affect NF-�B signaling in the cytoplasm (see below).
However, when cytoplasmic signaling events were in-
hibited by the use of dominant negative mutants, a
small residual activation of NF-�B by Tax could still be
observed [107]. Hence, currently, it cannot be com-
pletely excluded that in HTLV-I infected cells nuclear
interactive events co-operate with the cytoplasmic ef-
fects of Tax to influence overall NF-�B activation.

3.2. Tax and cytoplasmic signaling of NF-�B

There are two perspective as to how cytoplasmic Tax
modulates NF-�B activity. Previously, it was known
that Tax could directly bind the ankyrin motif con-
tained in molecules such as cyclin-dependent kinase
inhibitor p16INK4A [41,108,109]. Such observation sup-
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Fig. 3. A model of Tax-mediated transcription through the CREB/ATF pathway. A CREB-dimer is shown to bind to the Tax-responsive elements
(TRE) and interact with a Tax homodimer capable of recruiting a molecule(s) of CBP/p300 and P/CAF. This CREB/Tax/CBP/(P/CAF) complex
can then influence TATAA-bound TATA-binding protein (TBP) to enhance the initiation of RNA-polymerase II (RNAP II).

ported the reasoning that Tax might physically con-
tact I�B-molecules through similar ankyrin-motifs,
thereby dissociating I�Bs from cytoplasmically se-
questered NF-�Bs (Fig. 4A). This idea proposes a
contact-dependent dissociation mechanism through
which Tax would target I�Bs for proteosomal degra-
dation [110]. Compatible with this view, Tax was
found to associate with both I�B� [111–113] and
p105 [114], which can function as a cytoplasmic I�B-
molecule. However, subsequent studies using Tax and
I�B� mutants defined clearly that direct contact be-
tween these two molecules insufficiently explains NF-
�B-activation (reviewed in Ref. [45]) suggesting the
existence of an alternative activating mechanism(s).

Besides the dissociation model of I�B from NF-�B,
another general mechanism of NF-�B activation de-
scribes site-specific phosphorylation of I�B�, followed

by its ubiquitination and degradation [115–117]. A
plethora of studies have defined I�B phosphorylation
as a critical regulatory step for NF-�B activation. Re-
cent insights into how I�B� phosphorylation occurs
inside cells were revealed from extensive characteriza-
tions of a 700-kDa complex which contains kinase
activity specific for serine 32 and 36 of I�B�
[118,119]. Detailed analyses of this large-kinase-com-
plex resulted in the cloning of two I�B-kinases —
IKK� and IKK� [120–124]. IKK� is an 85-kDa
protein, while IKK� is an 87-kDa protein. Both are
52% identical and contain an N-terminal kinase do-
main, a leucine zipper and a helix-loop-helix motif.
Using purified recombinant IKK� and IKK�, it was
unambiguously proven that these kinases specifically
phosphorylated I�B� and I�B� with a slight prefer-
ence for the former over the latter [125].

Fig. 4. Two models explaining Tax-mediated ‘freeing’ of NF-�B from I�B sequestration. (A) Direct contact of Tax with I�B leads to dissociation
of I�B from NF-�B (RelA/p50). (B) Tax is recruited to IkB/NF-�B complex through IKK�/�/�. In this scenario, a Tax-dependent MAP3K
activity (not shown) is envisioned to phosphorylate I�B leading to its ubiquination and degradation by proteosome.
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The large intracellular IKK-� and IKK-� containing-
complex, interestingly, was also found to include two
members of the MAP kinase kinase kinase (MAP3K)
group, MAPK/ERK kinase kinase 1 (MEKK-1) and
NF-�B-inducing kinase (NIK) [126–129]. Very re-
cently, a non-catalytic regulatory subunit for the IKK�
and IKK� named IKK� (or NEMO) was also identified
in this complex. cDNAs for human and mouse IKK�
have been cloned [130–132]. Collectively, based on the
work of several independent laboratories, it is currently
understood that in virtually all settings activation of
either IKK� or IKK� requires the IKK� subunit, since
mouse cells deficient in IKK� fail to phosphorylate and
degrade I�Bs and do not activate NF-�B in response to
diverse stimuli such as TNFa, IL-1, LPS and double-
stranded RNA [131]. It is additionally understood that
both IKK� and IKK� are activated by phosphoryla-
tion on specific serines (S176 and S180 for the former;
S177 and S181 for the latter). In this regard, NIK
[127,128] and MEKK1 [126,128,129], as well as addi-
tional MAP3Ks [133,134] have been invoked as IKK-
activating kinases (IKKK). Intriguingly, despite these
advances, it remains controversial as to which MAP3K
represents the authentic intracellular IKKK needed to
activate NF-�B (reviewed in Refs. [135,136]).

In the context of the IKK-signalosome, how does
Tax function mechanistically to activate NF-�B? Bio-
chemically, over-expressed Tax protein was found by
several investigators to be present within the large
IKK�-[137–139] and IKK�-[137–140] containing intra-
cellular complex. An initial interpretation was that
perhaps Tax contacted either IKK� or IKK� proxi-
mally. However, subsequent findings verified that it is
IKK� that binds Tax directly. Thus, IKK� functionally
adapts the Tax-oncoprotein into the large IKK�/IKK�/
IKK� complex [40,141,142].

Simultaneous with the physical characterizations of
IKK-Tax association, complementary functional stud-
ies have clarified as to how IKK-� and IKK-� activities
might be impinged upon by Tax (Fig. 5). First, it was
found that dominant negative forms of NIK inhibited
Tax-activation of NF-�B [138,139]. This suggested that
Tax acts at a step upstream of NIK-phosphorylation of
IKK�/�. Next, work from Gaynor et al. demonstrated
a direct association between MEKK1 and Tax, which
resulted in a preferential activation of IKK� [140]. A
dominant negative form of MEKK1 was shown by
these investigators to also inhibit Tax-activation of
NF-�B [140]. Together, these results propose a redun-
dant usage of multiple MAP3Ks by Tax for NF-�B-ac-
tivation. Consistent with this redundancy, we have
recently observed that over-expression of a dominant
negative form of MLK3 (another MAP3K; [134]) fur-
ther inhibited independently NF-�B activation by Tax
[143]. The molecular interplays between these MAP3Ks

Fig. 5. Summary of sequential events in Tax-activation of nuclear
NF-�B activity. A not yet fully understood interaction occurs be-
tween Tax and a MAP3K in the cytoplasm. The identity of the
relevant MAP3K remains controversial, although dominant negative
forms of NIK, MEKK1 and MLK3 all independently suppress
Tax-activation of NF-�B. Tax is then recruited into the IKK�/�/�
complex. Parenthesis around IKK� indicates that Tax activation of
NF-�B remains intact in at least one cell line deficient for IKK�,
suggesting that other factors may substitute for IKK�. The IKK/Tax/
MAP3K complex is then postulated to phosphorylate I�B�. Phos-
phorylation of I�B� triggers a ubiquitin-proteosomal degradation
pathway which frees NF-kB (p50/p65) to migrate into the nucleus.

and whether additional MAP3Ks can be utilized by
Tax remain to be investigated.

How might one then coalesce extant observations on
Tax activation of NF-�B through the IKK-complex?
While several questions remain to be answered, the
following statements seemingly describe a plausible
functional scenario (Fig. 5). Tax activation of NF-�B
occurs at a point down-stream of the small G proteins
and the TNF-� receptor interacting factors [138,140].
At this juncture, Tax bridges the IKK-complex with a
MAP3K. Evidence for this bridging mechanism is sup-
ported by evidence of direct contact between Tax and
both IKK� [40,141,142] and MEKK1 [140]. MAP3K,
as recruited by Tax, is then speculated to phosphorylate
IKK�/� leading to a cascade of events (reviewed in
Refs. [91,101]) which releases NF-�B for nuclear migra-
tion (Fig. 5). This paradigm is compatible with most of
our existing findings on Tax and NF-�B.

Several important issues regarding NF-�B activation
in HTLV-I-infected cells are, however, not addressed
by the above scenario. First, in light of recent findings
from knock-out mice that MEKK1 might be dispensi-
ble for NF-�B activation [144], the authentic intracellu-
lar MAP3K utilized by Tax requires further definition.
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Second, the fact that the gene encoding for IKK� resides
on the X-chromosome [132] suggests IKK-� functions to
be sex-biased [145,146]. Alternatively, there could be
additional yet recognized adapter proteins that redun-
dantly serve the IKK�-function. Indeed, in support of
this supposition, a B-precursor-cell line, genetically defi-
cient for IKK�, was previously shown to support fully
Tax-activation of NF-�B [147]. Understanding what are
the additional IKK�-like proteins that could be function-
ally used by Tax represents a compelling future challenge.
Third, additional IKK�-binding protein [148] which
influence NF-�B-activation has recently been identified.
It would be of interest to clarify how such protein(s)
might influence the biology of Tax–IKK interaction.
Finally, whether Tax alone explains in vivo NF-�B
activation within HTLV-I infected cells has been recently
questioned by investigators [100]. The observation that
constitutive NF-�B activation exists in HTLV-I infected
cells that do not detectably express Tax suggests that
additional virally-encoded (induced) factors should also
be carefully investigated [100].

4. Implications for cellular transformation

A critical reason for investigating Tax–NF-�B interac-
tion is to understand the contribution of this pathway to
cellular transformation. Several studies support that Tax
activation of NF-�B contributes to transformation [149–
151]. On the other hand, two other studies have suggested
that activation through the CREB/ATF pathway by Tax
plays a more important role [20,152]. Most recently,
experiments using the HTLV-II Tax (Tax2) protein have
provided an elegant explanation for these discrepancies.
Green et al. demonstrated that NF-�B-activation by
Tax2 provided for initiation of transformation while
CREB/ATF-activation served necessarily to maintain
the transformed phenotype [153]. An important future
goal would be to elucidate how these two pathways
cooperate in the important biological process of cellular
transformation.
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